Formation of Peroxynitrite from the Oxidation of Hydrogen Peroxide by Nitrosonium Ion (NO⁺): A Pulse Radiolysis Study

Sara Goldstein* and Gidon Czapski

Department of Physical Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Received March 1, 1996[⊗]

The rate constant of the reaction of N_3 with NO has been determined to be $(4.4 \pm 0.5) \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ using the pulse radiolysis technique at pH 7.6–8.3 and 21 °C. The reaction of N_3 with NO takes place through an innersphere electron-transfer mechanism yielding N₃NO as an intermediate, which subsequently decays to N₂O and N₂. Peroxynitrite was formed when H₂O₂ was added to the N_3/NO system at pH 5.8–8.3. The maximum yield of peroxynitrite, which was obtained at [H₂O₂] > 0.2 M, was \sim 34% of the initially produced N_3 , indicating that N₃NO does not react directly with H₂O₂. We conclude that, in the presence of high concentrations of H₂O₂, \sim 64% of the N₃NO decomposes into N₂O and N₂, whereas the remaining 34% yields NO⁺ or H₂NO₂⁺, which subsequently reacts with H₂O₂ to form peroxynitrite. The comparison of our kinetic results with those obtained previously in the H⁺/HNO₂/H₂O₂ system shows that the nitrosating species in both systems differ. As H₂NO₂⁺ is the precursor of NO⁺ in the H⁺/HNO₂/H₂O₂ and H₂O was determined to be 65 M⁻¹. These rate constants were estimated to be $k_7 > 3 \times 10^8$ and $k_{-4}[H_2O] > 4.6 \times 10^6 \text{ s}^{-1}$, respectively.

Introduction

Nitric oxide has become in the last few years one of the most studied and fascinating molecules in biological chemistry. •NO is generated from L-arginine by the enzyme NO synthase¹ and is involved in a large number of diverse biological processes.¹⁻⁴ Biologically, the important reactions of •NO are those with oxygen in its various redox forms and with transition metal ions.⁵

Excess production of •NO is toxic.^{6–9} The toxicity of •NO has been partially attributed to the formation of peroxynitrite (ONOO⁻).^{9–11} The latter is a potent oxidant that oxidizes a large variety of biomolecules such as sulfhydryls,¹² lipids,¹³ enzymes,¹⁴ and DNA.¹⁵

The formation of peroxynitrite can take place through the reaction of $^{\circ}NO$, NO⁻, or NO⁺ (H₂NO₂⁺) with O₂^{•-}, O₂, and

- (2) Palmer, R. M. J; Ferrige, A. G.; Moncada, S. Nature 1987, 327, 524.
- (3) Benjamin, N.; Dutton, J. A. E.; Ritter, J. M. Br. J. Pharmacol. 1991, 102, 847.
- (4) Curran, R. D.; Ferrari, F. K.; Kispert, P. H.; Stadler, J.; Stuehr, D. J.; Simmons, R. L.; Billiar, T. R. FASEB J. 1991, 5, 2085.
- (5) Stamler, J. S.; Singel, D. J.; Loscalzo, J. *Science* 1992, 258, 1898.
 (6) Hibbs, J. B., Jr.; Taintor, R. R.; Vavrin, Z.; Rachlin, E. M. *Biochem.*
- Biophys. Res. Commun. 1988, 157, 87.
 (7) Wink, D. A.; Kasprzak, K. S.; Maragos, C. M.; Elespuru, R. K.; Misra, M.; Dunams, T. M.; Cebula, T. A.; Koch, W. H.; Andrews, A. W.;
- Allen, J. S.; Keefer, L. K. Science 1991, 254, 1001.
 (8) Molina y Vedia, L.; McDonald, B.; Reep, B.; Brune, B.; Di Silvio, M.; Billiar, T. R.; Lapetina, E. G. J. Biol. Chem. 1992, 267, 24929.
- (9) Beckman, J. S.; Crow, J. P. Biochem. Soc. Trans. 1993, 21, 330.
 (10) Pryor, W. A.; Sequadrito, G. L. Am. J. Physiol. (Lung Cell. Mol.
- Physiol.) 1995, 268, L699.
- (11) Czapski, G.; Goldstein, S. Free Rad. Biol. Med. 1995, 19, 785.
- (12) Radi, R. Beckman, J. S.; Bush, K. M.; Freeman, B. J. Biol. Chem. 1991, 266, 4244.
- (13) Radi, R. Beckman, J. S.; Bush, K. M.; Freeman, B. A. Arch. Biochem. Biophys. 1991, 288, 481.
- (14) Floris, R.; Piersma, S. R.; Yang, G.; Jones, P.; Wever, R. Eur. J. Biochem. 1993, 215, 767.
- (15) King, P. A.; Anderson, V. E.; Edwards, J. O.; Gustafson, G.; Plumb, R. C.; Suggs, J. W. J. Am. Chem. Soc. 1992,114, 5430.

H₂O₂, respectively. The occurrence of the reaction of •NO with superoxide has been demonstrated in many biological systems.^{9,11} The reaction is diffusion-controlled with $k_1 = (4.3 - 6.7) \times 10^9 \text{ M}^{-1} \text{ s}^{-1.16,17}$

$$^{\bullet}NO + O_2 \stackrel{\bullet^-}{\rightarrow} ONOO^-$$
(1)

Nitroxyl anion (NO⁻) can form peroxynitrite through its reaction with molecular oxygen.¹⁸ There is no evidence that this reaction takes place in biological systems. The rate constant of reaction 2 has not yet been determined.

$$NO^{-} + O_2 \rightarrow ONOO^{-}$$
(2)

Nitrosonium ion (NO⁺) is a well-known chemical entity. It is formed in strong acid solutions of nitrous acid via eqs 3 and 4.

$$H^{+} + HNO_{2} \rightleftharpoons H_{2}NO_{2}^{+}$$
(3)

$$H_2 NO_2^+ \rightleftharpoons NO^+ + H_2 O \tag{4}$$

The equilibrium constant of reaction 5 has been determined

$$H^{+} + HNO_{2} \rightleftharpoons H_{2}O + NO^{+}$$
(5)

spectrophotometrically by measuring HNO₂ and NO⁺ in HClO₄ to be $K_5 = K_3K_4 = 3 \times 10^{-7} \text{ M}^{-1.19}$ There was no spectroscopic evidence for the formation of H₂NO₂⁺, and its yield could not exceed 5% under these conditions.¹⁹ Nevertheless, kinetically, the nitrous acidium ion remains as a possible nitrosating agent. The very small value of K_5 indicates that

(19) Bayliss, N. S.; Dingle, R.; Watts, D. W.; Wilkie, R. J. Aust. J. Chem. 1963, 16, 933.

^{*} To whom all correspondence should be addressed.

[®] Abstract published in *Advance ACS Abstracts*, November 15, 1996.
(1) Moncada, S.; Palmer, R. M. J.; Higgs, E. A. *Pharmacol. Rev.* 1991, 43, 109.

⁽¹⁶⁾ Huie, R. E.; Padmaja, S. Free Radical Res. Comms. 1993, 18, 195.

⁽¹⁷⁾ Goldstein, S.; Czapski, G. Free Radical Biol. Med. 1995, 19, 505.

⁽¹⁸⁾ Donald, C. E.; Hughes, M. N.; Thompson, J. M.; Bonner, F. T. Inorg. Chem. 1986, 25, 2676.

7736 Inorganic Chemistry, Vol. 35, No. 26, 1996

 NO^+ , and most probably $H_2NO_2^+$, cannot have any biological relevance under weakly acidic and physiological conditions.

Anbar and Taube²⁰ demonstrated that peroxynitrite is formed as an intermediate during the reaction of nitrite with H_2O_2 at pH 4–6 and 25 °C. The kinetic data were consistent with both NO⁺ or "an isomeric change in $H_2NO_2^+$ " as the nitrosating entities, though NO⁺ seemed at that time a more attractive possibility.²⁰

$$\mathrm{H_2NO_2}^+ + \mathrm{H_2O_2} \rightarrow \mathrm{ONOOH} + \mathrm{H}^+ + \mathrm{H_2O} \qquad (6)$$

or

$$NO^{+} + H_2O_2 \rightarrow ONOOH + H^{+}$$
(7)

In this study, we used the pulse radiolysis technique to generate N_3 in order to oxidize NO and to study the reaction of the oxidized species with H_2O_2 .

Experimental Section

Chemicals. All chemicals were of analytical grade and were used as received. Solutions were prepared with deionized water that was distilled and purified using a Milli-Q water purification system. Nitric oxide, C.P., was bought from Matheson Gas Products. 'NO was purified by passing it through a series of scrubbing bottles containing 50% NaOH and purified water in this order. The solutions in the traps were first deaerated by purging them with helium for 1 h. Nitric oxide solutions were prepared in gas-tight syringes by purging first 1 mM phosphate buffer solutions with helium to remove O₂, followed by bubbling for 30 min with 'NO. The 'NO-saturated solutions (1.8 mM at 21 °C and 690 mmHg,²¹ which is the barometric pressure in Jerusalem) were stored in syringes and subsequently diluted with N₂Osaturated solutions to the desired concentrations by the syringe technique. All experiments were carried out at 21 °C.

The concentration of H_2O_2 was determined with the super-Fricke dosimeter (10 mM Fe^{II} in 0.8 N H₂SO₄) using ϵ_{302} (Fe^{III}) = 2200 M⁻¹ cm⁻¹.

Methods. Pulse radiolysis experiments were carried out with the Varian 7715 linear accelerator with 5 MeV electrons pulses of 0.1–1.5 μ s and 200-mA current. The dose per pulse was 3–29 Gy, respectively, and was determined with either the thiocyanate dosimeter (10 mM KSCN in N₂O-saturated water) or the hexacyanoferrate(II) dosimeter (5 mM K_4 Fe(CN)₆ in N₂O-saturated water) using G ϵ (SCN)₂·-) = 5.0 × 10⁴ M⁻¹ cm⁻¹ at 475 nm and G ϵ (Fe(CN)₆³⁻) = 6.7 × 10³ M⁻¹ cm⁻¹ at 420 nm.²² A 200-W Xe–Hg lamp produced the analyzing light. Appropriate filters were used to minimize photochemistry. Irradiation was carried out in a 4-cm spectrosil cell using three light passes.

Results and Discussion

Reaction of 'N₃ with 'NO. When N₂O-saturated solutions $([N_2O] = 0.025 \text{ M})$ containing azide are irradiated at pH >3, the following reactions take place:

$$H_2O \xrightarrow{\gamma} e_{aq}^-$$
 (2.6), [•]OH (2.7), H[•] (0.6), H_2 (0.45),
 H_2O_2 (0.7), H_3O^+ (2.6) (8)

The numbers in parentheses are G values, which represent the number of molecules formed per 100 eV energy absorbed by pure water.

- (21) Lange's Handbook of Chemistry, 13th ed.; Dean, J. A., Ed.; McGraw-Hill: New York, 19xx; p 10-5.
- (22) Buxton, G. V.; Stuart, C. R. J. Chem. Soc., Faraday Trans. 1995, 91, 279.
- (23) Ross, A. B.; Mallard, W. G.; Helman, W. P.; Buxton, J. V.; Huie, R. E.; Neta, P. NIST Standard References Database 40, Version 2.0, 1994.

$$e^{-}_{aq} + N_{2}O \rightarrow N_{2} + OH^{-} + OH^{\bullet} k_{9} = 9.1 \times 10^{9} \text{ M}^{-1} \text{ s}^{-1} \frac{23}{(9)}$$

$${}^{\bullet}OH + N_{3}^{-} \rightarrow {}^{\bullet}N_{3} + OH^{-} \qquad k_{10} = 1.2 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1} \frac{23}{(10)} H^{\bullet} + N_{3}^{-} \rightarrow HN_{3}^{-} \qquad k_{11} = 2.9 \times 10^{9} \text{ M}^{-1} \text{ s}^{-1} \frac{23}{(11)}$$

The azide radical is a strong one-electron oxidizing agent with a reduction potential of 1.3 V vs NHE.²⁴ The azide radical exhibits an optical absorption in the UV region with a sharp maximum at 274–277 nm ($\epsilon = 1400-2025 \text{ M}^{-1} \text{ cm}^{-1}$).^{25,26}

Under our experimental conditions (N₂O-saturated solutions containing 20 mM azide at pH 7.6–8.3 (2 mM phosphate buffer), a slit width 0.5 mm, and a dose of 8.6 Gy), we determined $\epsilon_{275}(^{\circ}N_3) = (1690 \pm 40) M^{-1} cm^{-1}$. The decay of $^{\circ}N_3$ was second order and $2k_{12} = (8.1 \pm 0.6) \times 10^9 M^{-1} s^{-1}$ in agreement with previous results.^{25,26}

$$^{\bullet}N_3 + ^{\bullet}N_3 \rightarrow 3 N_2 \tag{12}$$

In the presence of 'NO, reactions 13-15 compete with reactions

$$e_{aq}^{-} + NO \rightarrow NO^{-}$$
 $k_{13} = 3.1 \times 10^{10} M^{-1} s^{-1} s^{23}$ (13)

•OH + •NO
$$\rightarrow$$
 HONO $k_{14} = 2.0 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1} \overset{23}{(14)}$

H + [•]NO → HNO
$$k_{15} = 1.1 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1} \frac{23}{(15)}$$

9–11. If NO⁻ is formed, it will react rapidly with •NO to form $N_2O_2^-$ (and subsequently $N_3O_3^-$), which can easily be detected as $\epsilon_{380}(N_2O_2^-) \sim 3000 \text{ M}^{-1} \text{ cm}^{-1}$ and $\epsilon_{380}(N_3O_3^-) \sim 4000 \text{ M}^{-1} \text{ cm}^{-1}.^{27,28}$ Under the conditions where $[N_3^-]/[\text{•NO}]$ and $[N_2O]/[\text{•NO}]$ are higher than 50, e^-_{aq} and •OH were converted into •N₃, and the decay of •N₃ was first order.

$$N_3 + NO \rightarrow \text{products}$$
 (16)

The observed first-order rate constant was linearly dependent on [•NO]_o (Figure 1), and k_{16} was determined from the slope of the line in Figure 1 to be $(4.4 \pm 0.5) \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$.

Solutions containing 0.02 M N₂O, 3.6×10^{-4} M •NO, and 0.016–0.024 M azide at pH 7.6 (1.6 mM phosphate buffer) were pulse-irradiated with a total dose of 350-475 Gy. The light absorption of the solution was monitored before and after the irradiation. We found that the yield of nitrite was very low, 6-9%. This measurement is inaccurate due to the very small extinction coefficient of nitrite ($\epsilon_{354} = 21$ M⁻¹ cm⁻¹).

The reduction potential of NO/NO^+ is 1.21 V,²⁴ whereas that of N_3/N_3^- is 1.3 V.²⁴ Therefore, from the thermodynamic point of view, reaction 16 can take place through an outer-sphere electron-transfer mechanism, yielding nitrite as a final product.

- (24) Stanbury, D. M. Adv. Inorg. Chem. 1989, 33, 69.
- (25) Buxton, G. V.; Janovsky, I. J. Chem. Soc., Faraday Trans. 1976, 72, 1884.
- (26) Alfassi, Z. B.; Schuler, R. H. J. Phys. Chem. 1985, 89, 3359.
- (27) Von Gratzel, M.; Taniguchi, S.; Henglein, A. Ber. Bunsenges. Phys. Chem. 1970, 74, 1003.
- (28) Seddon, W. A.; Fletcher, J. W.; Sopchyshyn, F. C. Can. J. Chem. 1973, 51, 1123.

⁽²⁰⁾ Anbar, M.; Taube, H. J. Am. Chem. Soc. 1954, 76, 6243.

Formation of Peroxynitrite from H₂O₂

$$^{\bullet}N_{3} + ^{\bullet}NO \rightarrow NO^{+} + N_{3}^{-}$$
(17)

$$NO^+ + H_2O \rightleftharpoons H_2NO_2^+$$
 (-4)

$$H_2 NO_2^+ \rightleftharpoons H^+ + HNO_2$$
 (-3)

As the yield of nitrite did not exceed 9%, the outer-sphere electron-transfer mechanism is rejected, and an inner-sphere electron-transfer mechanism should be considered.

$$N_3 + NO \rightarrow N_3NO$$
 (18)

The formation of N_3NO as an intermediate has already been shown in the reaction between HN_3 and HNO_2 by ¹⁵N tracer experiments.²⁹ This species can also be isolated at low temperatures.³⁰

The very low yield of nitrite under our experimental conditions can be attributed to reactions 13-15. Under our experimental conditions, 5.8% of the hydrated electrons are converted into NO⁻ (reaction 13), 2.4–3.6% of the hydroxyl radicals are converted into nitrite (reaction 14), and 6.7–9.7% of the hydrogen atoms are converted into NO⁻ (reaction 15). NO⁻ reacts rapidly with •NO to yield N₂O₂⁻ (and subsequently N₃O₃⁻). The final products of this process are N₂O and NO₂^{-.27,28} Thus, the total yield of nitrite due to reactions 13– 15 is 4.8–5.5%, which is within experimental error identical to the measured yields of 6–9%. This indicates that the decomposition of N₃NO takes place mainly via reaction 19 and that there is no appreciable hydrolysis N₃NO in aqueous solutions in agreement with previous results.³¹

$$N_3 NO \rightarrow N_2 O + N_2 \tag{19}$$

•N₃/•NO/H₂O₂ System. When H₂O₂ ($pK_a = 11.8$) is added to N₂O-saturated solutions containing azide and •NO, reactions 20–22 may compete with reactions 9, 10, and 16. (The rate

$$e_{aq}^{-} + H_2O_2 \rightarrow OH + OH^{-}$$

 $k_{20} = 1.2 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1} \text{ }^{23}$ (20)

•OH + H₂O₂ → H⁺ + O₂^{•-} + H₂O
$$k_{21} = 3.5 \times 10^7 \text{ M}^{-1} \text{ s}^{-1 \ 23}$$
 (21)

$${}^{\bullet}N_3 + HO_2^{-} \rightarrow N_3^{-} + H^+ + O_2^{\bullet-}$$

 $k_{22} = 3.2 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} {}^{23} (22)$

constant of ${}^{\bullet}\!N_3$ with H_2O_2 is lower than 5 \times 10 6 M^{-1} $s^{-1}).^{23}$

When $[N_3^-]/[^{\bullet}NO]$ and $[N_2O]/[^{\bullet}NO]$ are higher than 50, $[^{\bullet}NO] = 60-360 \ \mu$ M, $[H_2O_2] < 0.2$ M, and pH <8.5, most of the hydroxyl radicals and the hydrated electrons are converted into $^{\circ}N_3$, which subsequently reacts with $^{\circ}NO$ and not with H_2O_2 . Under these conditions, the following features were observed:

(i) A fast formation of an absorption with maximum at 300 \pm 3 nm (Figure 2). The formation rate of the absorbance was independent of [N₃⁻] and [H₂O₂] but dependent on [•NO]_o, indicating that the rate-determining step is the reaction of •N₃ with •NO

(ii) The absorption yield increased with $[H_2O_2]$, reaching a plateau value at $[H_2O_2] > 0.2$ M (Figure 3).

Figure 1. Observed first-order rate constant of the decay of N_3 as a function of $[NO]_0$ in 0.02 M N₂O and 0.02 M azide at pH 8.3 (1.6 mM phosphate buffer). The dose was 3.2-5.0 Gy.

Wavelength, nm

Figure 2. Absorption spectrum obtained 100 μ s after the end of the pulse. The solution contained 0.02 M N₂O, 0.019 M azide, 144 μ M 'NO, and 0.1 M H₂O₂ at pH 8.1 (1.6 mM phosphate buffer). The optical path length was 12.3 cm, and the dose was 14.6 Gy.

(iii) The absorption yield was independent of $[N_3^-]$ ($[N_3^-]$) = 5 × 10⁻³-0.2 M) as observed in the presence of 0.05 M H₂O₂ at pH 8.1 (1.6 mM phosphate buffer).

(iv) The absorption yield was pH-dependent, resulting in an apparent $pK_a = 7$ (Figure 4).

(v) The decay of the absorbance followed first-order kinetics. The observed first-order rate constant decreased with the increase in pH: 0.95, 0.63, 0.32, and 0.11 s⁻¹ at pH 5.8, 6.4, 7, and 7.3, respectively, at 21 °C. At pH >7.5, the decay was subject to photolysis and could not be measured.^{17,32}

These results demonstrate that the species formed in the $N_3/$ •NO/H₂O₂ system is peroxynitrite. This conclusion was based on the known properties of peroxynitrite: (a) peroxynitrous acid has a p $K_a = 6.8^{-10}$; (b) the maximum absorption of ONOO⁻ is at 302 nm ($\epsilon = 1670 \pm 50 \text{ M}^{-1} \text{ cm}^{-1}$),³³ whereas ϵ_{302} (ONOOH) ~200 M⁻¹ cm⁻¹;^{17,32} (c) ONOO⁻ is stable whereas ONOOH decays fast to nitrate with $k_d \sim 1.3 \text{ s}^{-1}$ at 25 °C.¹⁰

The maximum yield of peroxynitrite was calculated from Figure 3 to be $\sim 30\%$ of the initially produced $\cdot N_3$ using $\epsilon_{303} =$

⁽²⁹⁾ Clusius, K.; Effenberger, E. Helv. Chim. Acta 1955, 38, 1834.

⁽³⁰⁾ Lucien, H. W. J. Am. Chem. Soc. 1958, 80, 4458.

⁽³¹⁾ Bunton, C. A.; Stedman, G. J. Chem. Soc. 1959, 3466.

⁽³²⁾ Logager, T.; Sehested, K. J. Phys. Chem. 1993, 97, 10047.

⁽³³⁾ Hughes, M. N.; Nicklin, H. G. J. Chem. Soc. A 1968, 450.

1670 M^{-1} cm⁻¹ and p $K_a = 6.8$. This result supports our previous conclusion that reaction 16 proceeds through an innersphere electron-transfer mechanism. If NO⁺ would have been formed via reaction 17, one would expect a 100% yield of peroxynitrite at infinite H₂O₂, where reaction 7 competes efficiently with the hydrolysis of NO⁺. In addition, N₃NO cannot be the oxidizing species, as in this case a 100% yield of peroxynitrite would also be expected at infinite H₂O₂.

Our experimental observations are in accord with the formation of peroxynitrite through the reaction of H_2O_2 with $H_2NO_2^+$ (mechanism I) or through the reaction of H_2O_2 with NO⁺ (mechanisms II).

mechanism I

$$N_2O + N_2$$

 $N_3 + NO \longrightarrow N_3NO$
 $k_{23}[H_2O] \Downarrow k_{23}$
 $N_3^{-} + H_2NO_2^{+} \xrightarrow{H_2O_2} ONOOH + H_2O + H^{-1}$
 $k_3 \oiint k_3$
 $H^{+} + HNO_2$

mechanism II

$$N_{2}O + N_{2}$$

$$k_{19} \xrightarrow{k_{18}} N_{3}O + N_{2}$$

$$N_{3} + NO \longrightarrow N_{3}NO$$

$$k_{24} \parallel k_{24}$$

$$N_{3}^{-} + NO^{+} \xrightarrow{H_{2}O_{2}} ONOOH + H^{-}$$

$$k_{4} \parallel k_{4}H_{2}O$$

$$H_{2}NO_{2}^{+}$$

$$k_{3} \parallel k_{3}$$

$$H^{+} + HNO_{2}$$

The yield of peroxynitrite was independent of $[N_3^-] = 5 \times 10^{-3}-0.2$ M in the presence of 50 mM H₂O₂. Therefore, in mechanism I, reaction -23 can be neglected, and the competition for H₂NO₂⁺ is between reactions -3 and 6, where OD₃₀₃(max) is the maximum yield of peroxynitrite at infinite H₂O₂:

$$OD_{303} = OD_{303}(max)k_6[H_2O_2]/(k_6[H_2O_2] + k_{-3})$$
 (25)

If mechanism II applies, reaction -24 can be neglected, and the competition for NO⁺ is between reactions -4 and 7.

$$OD_{303} = OD_{303}(max)k_7[H_2O_2]/(k_7[H_2O_2] + k_{-4}[H_2O])$$
(26)

A plot of $1/(DD_{303})$ as a function of $1/[H_2O_2]$ yields a straight line (Figure 5), where $1/\text{intercept} = OD_{303}(\text{max}) = 0.064$ and intercept/slope = I/S = 65 M⁻¹, which equals k_6/k_{-3} (mechanism I) or $k_7/k_{-4}[H_2O]$ (mechanism II). As $OD_{303}(\text{max}) = 0.064$ at infinite H_2O_2 and at pH 8 ([N_3]₀ = 9.75 μ M, l = 12.3 cm), the maximum yield of peroxynitrite is calculated to be 34% of the initially produced N_3 , using $pK_a = 6.8$ and $\epsilon_{303} = 1670$ M⁻¹ cm⁻¹. This value is somewhat higher than that of the 30%

Figure 3. Absorbance at 303 nm measured 100 μ s after the end of the pulse as a function of [H₂O₂]. Solutions contained 0.023 M N₂O, 0.019 M azide, and 72–360 μ M •NO at pH 8.0 (1.8 mM phosphate buffer). The optical path length was 12.3 cm, and the dose was 14.6 Gy.

calculated from the plateau region of Figure 3 and shows that k_{19}/k_{23} or $k_{19}/k_{24} = 2$.

The rate-determining step of the nitrosation process when $[{}^{\circ}NO] = 60 - 140 \ \mu M$ and $[H_2O_2] \ge 8 \ mM$ is reaction 18 $(k_{19}[N_3NO] \text{ and } k_6[H_2NO_2^+][H_2O_2] \text{ or } k_7[NO^+][H_2O_2] \text{ exceed} k_{18}[{}^{\circ}NO][{}^{\circ}N_3])$, and hence, $k_{19} \ge 1 \times 10^6 \ \text{s}^{-1}$ and $k_6 \ \text{or } k_7 \ge 3 \times 10^8 \ \text{M}^{-1} \ \text{s}^{-1}$.

Anbar and Taube²⁰ measured the rate of the disappearance of nitrite as a function of H_2O_2 at pH 4–6 (0.3 M phosphate buffer) and 25 °C. Benton and Moore³⁴ measured the formation rate of ONOOH as a function of H_2O_2 in the presence of nitrous acid at pH <2 and 0 °C. In both studies the rate law was found to obey eq 27, where *a*, *b*, and *c* are constants.

rate =
$$\frac{a[\text{H}^+][\text{HNO}_2] [\text{H}_2\text{O}_2]}{b + c[\text{H}_2\text{O}_2]} = k_{\text{obs}}[\text{HNO}_2]$$
 (27)

A plot of $[H^+]/k_{obs}$ as a function of $1/[H_2O_2]$ yielded a straight line with intercept/slope = I/S = c/b = 2.32 ³⁴ to 2.4 M^{-1 20} and 1/I = a/c = 617 ³⁴ to 2.9 × 10³ M⁻¹ s^{-1.20} The rate law is consistent with either NO⁺ or H₂NO₂⁺ as the reactive intermediates. If NO⁺ is the nitrosating species (reactions 3, 4, and 7), rate equation 27 is obtained where $a = k_7k_4K_3$, $b = k_{-4}[H_2O]$ and $c = k_7$. If H₂NO₂⁺ is the reactive intermediate (reactions 3 and 6), rate eq 27 is obtained where $a = k_6k_3$, $b = k_{-3}$ and $c = k_6$. The kinetic results in the H⁺/HNO₂/H₂O₂ cannot distinguish between NO⁺ and H₂NO₂⁺ (or "an isomeric change in H₂NO₂⁺"²⁰) as noted by Anbar and Taube.²⁰ Benton and Moore³⁴ concluded wrongly that NO⁺ is the reactive intermediate, although they noted that at low concentrations of H₂O₂ it is impossible to distinguish between NO⁺ and H₂NO₂⁺.

The kinetic results obtained in the H⁺/HNO₂/H₂O₂ and \cdot N₃/ •NO/H₂O₂ systems can fit the mechanisms where either H₂NO₂⁺ (or an isomeric change in H₂NO₂^{+ 20}) or NO⁺ is the nitrosating species. In our study, the competition ratio equals 65 M⁻¹, whereas in the H⁺/HNO₂/H₂O₂ system it equals 2.32 ³⁴ to 2.4 M⁻¹.²⁰ This shows that the reactive intermediates in these two systems differ.

Due to this difference, we argue that $H_2NO_2^+$ (or its isomeric form) cannot be the reactive species in our system. If this would

(34) Benton, D. J.; Moore, P. J. Chem. Soc. A 1970, 3179.

Figure 4. Absorbance at 303 nm as measured 100 μ s after the end of the pulse as a function of pH. Solutions contained 0.023 M N₂O, 0.019 M azide, 144 μ M 'NO, and 0.1 M H₂O₂. The optical path length was 12.3 cm, and the dose was 14.6 Gy. The solid line is the fit of the data to $\epsilon_{303}(\text{ONOO}^-) = 1670 \text{ M}^{-1} \text{ cm}^{-1}$, $\epsilon_{303}(\text{ONOO}^-) = 178 \text{ M}^{-1} \text{ cm}^{-1}$, and $pK_a = 7.0$.

Figure 5. Double-reciprocal plot of the change in the absorbance at 303 nm with varying the concentrations of H_2O_2 in the presence of 0.023 M N₂O, 0.019 M azide, and 72–360 μ M ·NO at pH 8.0 (1.8 mM phosphate buffer). The optical path length was 12.3 cm, and the dose was 14.6 Gy.

be the case, the same competition ratio would be expected in both systems as $H_2NO_2^+$ is the precursor of NO⁺ in the H⁺/ HNO₂/H₂O₂ system, and we have determined above that k_6 exceeds 3 × 10⁸ M⁻¹ s⁻¹. NO⁺ will be formed in the H⁺/ HNO₂/H₂O₂ system provided that $k_4 > k_6[H_2O_2]$. In such a case, H₂NO₂⁺ cannot be the nitrosating entity in our system, but NO⁺, and the same competition ratio is expected in both systems. This conclusion is not affected if one assumes that the nitrosating intermediate in the H⁺/HNO₂/H₂O₂ system is the isomeric form of H₂NO₂⁺ as suggested by Anbar and Taube²⁰ (see footnote 35).

We conclude that the nitrosating species in our system is most probably NO⁺, and therefore $k_7/k_{-4}[H_2O] = 65 \text{ M}^{-1}$, $k_7 > 3 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$, and $k_{-4}[H_2O] > 4.6 \times 10^6 \text{ s}^{-1}$. The value of k_7 cannot exceed the diffusion-controlled limit, and therefore $3 \times 10^8 < k_7 < 1 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$, and $4.6 \times 10^6 < k_{-4}[\text{H}_2\text{O} < 1.5 \times 10^8 \text{ s}^{-1}]$. As 0.2 M azide had no effect on the yield of peroxynitrite in the presence of 50 mM H₂O₂, we calculate that $8 \times 10^7 < k_{-24} < 3 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$.

The nitrosating entity in the H⁺/HNO₂/H₂O₂ system is most probably H₂NO₂⁺ and therefore, I/S = $k_6/k_{-3} = 2.32-2.4$ M⁻¹ and 1/I = $k_3 = 617-2900$ M⁻¹ s⁻¹.^{20,34,36} These results demonstrate that H₂NO₂⁺ is a strong acid, as rates of protonation of strong acids are considerably lower than the diffusioncontrolled limit.

Bunton and Stedman³¹ studied the reaction of HN_3 with HNO_2 in [¹⁸O]water, and showed that the reaction takes place via the oxidation of azide ion by $H_2NO_2^+$.

$$H^{+} + HNO_{2} \rightleftharpoons H_{2}NO_{2}^{+} \rightleftharpoons N_{3}NO + H_{2}O \rightarrow N_{2}O + N_{2}$$
(28)

Their conclusion does not contradict ours, as in their system $H_2NO_2^+$ is scavenged by N_3^- before NO^+ is formed. In our system, N_3NO is initially produced and dissociates into NO^+ and N_3^- . Therefore, if high concentrations of a potential substrate are present, e.g., H_2O_2 , it will scavenge NO^+ and $H_2NO_2^+$ will not be formed.

We conclude that both NO⁺ and $H_2NO_2^+$ can oxidize rapidly H_2O_2 and N_3^- as well as other substrates.^{31,37} The nature of the reactive intermediate will depend on the particular system.

$$H^{+} + HNO_{2} \xrightarrow{k_{3}} H_{2}NO_{2}^{+} \xrightarrow{k_{4}} NO^{+} + H_{2}O \leftarrow XNO_{k_{6}} \downarrow + S \xrightarrow{k_{-4}}_{\text{nitrosation}} k_{7} \downarrow + S \qquad (29)$$

If the nitrosation starts from the left through the reaction of H⁺ with HNO₂, H₂NO₂⁺ will most probably be the reactive intermediate, provided that k_6 [S] exceeds k_4 . In cases where NO⁺ is initially formed, e.g., from N₃NO or other NO⁺-releasing

⁽³⁵⁾ Anbar and Taube²⁰ noted that the rate law for the exchange of oxygen between nitrite and water can fit both NO⁺ or an isomeric change in H₂NO₂⁺. Therefore, the nitrosating intermediate in their system in the presence of H₂O₂ can be H₂NO₂⁺, its isomeric form, or NO⁺. The rate law for the decay of H₂O₂ given in ref 20 has the form of our eq 27 and can fit these three possibilities. We conclude that in our system NO⁺ is the nitrosating intermediate whereas in the H⁺/HNO₂/H₂O₂ system it is H₂NO₂⁺ or its isomeric form. H₂NO₂⁺ cannot be the reactive intermediate in our system and the isomeric form in the H⁺/HNO₂/H₂O₂ system because H₂NO₂⁺ is the precursor of its isomeric form.

⁽³⁶⁾ Halfpenny and Robinson (*J. Chem. Soc. A* **1952**, 928.) studied the reaction of HNO₂ with H₂O₂ at 19 °C and obtained that $-d[H_2O_2]/dt = k_{obs}[H^+][HNO_2][H_2O_2]$ and $k_{obs} = 140 \text{ M}^{-2} \text{ s}^{-1}$. According to the mechanism given by reactions 3 and 6, rate eq 27 reduces to the observed rate when $k_{-3} > k_6[H_2O_2]$, and hence, $k_{obs} = k_6K_3 = 140 \text{ M}^{-2} \text{ s}^{-1}$. As $k_6/k_{-3} = 2.4 \text{ M}^{-1}$,^{20,34} $k_3 = 60 \text{ M}^{-1} \text{ s}^{-1}$, which is more than 1 order of magnitude lower than the values determined in refs 20 and 34. The source for this discrepancy may be the following: Halfpenny and Robinson studied the reaction of HNO₂ with H₂O₂ in the presence of relatively high concentrations of H₂O₂ (≤0.176 M), where k_{-3} does not exceed $k_6[H_2O_2]$. Therefore, $k_6[H_2O_2]$ cannot be neglected, and 140 M⁻² s⁻¹ equals $k_6K_3/(k_{-3} + k_6[H_2O_2])$, which is lower than k_6K_3 .

⁽³⁷⁾ Ridd, J. H. Adv. Phys. Org. Chem. 1978, 16, 1.

compounds, ^{5,37,38} it will most probably react with the substrate, and H₂NO₂⁺ will not be formed, unless k_{-4} [H₂O] exceeds k_7 [S].

Conclusions

The azide radical reacts with 'NO to yield N_3NO , which decomposes mainly into N_2O and N_2 . In the presence of H_2O_2 , peroxynitrite is formed. The maximum yield of peroxynitrite at $[H_2O_2] > 0.2$ M is 34%, indicating that N_3NO does not react directly with H_2O_2 . The kinetic results suggest that N_3NO may either hydrolyze to $H_2NO_2^+$ or dissociate into NO^+ in the presence of H_2O_2 . Both intermediates are capable of nitrosating H_2O_2 .

The comparison of our competition ratio with that obtained in the H⁺/HNO₂/H₂O₂ system,^{20,34} indicates that the nitrosating intermediates in these systems differ. As H₂NO₂⁺ is the precursor of NO⁺ in the case of H⁺/HNO₂/H₂O₂, we conclude that the reactive species in our system is most probably NO⁺, whereas in the H⁺/HNO₂/H₂O₂ system it is H₂NO₂⁺. Nitrosation of a substrate by NO⁺ or H₂NO₂⁺ will take place only if the rate of these reactions competes efficiently with the hydrolysis of NO⁺ or with the dissociation of H₂NO₂⁺. Even if the rate constant of the nitrosation is diffusion-controlled, the concentrations of the substrate in the case of NO⁺ should exceed 0.5 mM as the half-life of NO⁺ is shorter than 0.15 μ s. Such high concentrations are not always present in biological systems. Therefore, we suggest that nitrosation *in vivo* may take place via NOX, where X⁻ represents an ion that reacts fast with H₂NO₂⁺ or NO^{+37,38} and that is present at relatively high concentrations, e.g., chloride. This mechanism will apply only in cases where the rates of the decomposition and/or hydrolysis of NOX are considerably slower than those of the dissociation of H₂NO₂⁺ and the hydrolysis of NO⁺.

Acknowledgment. This research was supported by Grant 4129 from The Council For Tobacco Research and by The Israel Science Foundation.

IC960233K

⁽³⁸⁾ Stedman, G. Adv. Inorg. Chem. Radiochem. 1979, 22, 113.