Formation of Peroxynitrite from the Oxidation of Hydrogen Peroxide by Nitrosonium Ion (NO⁺**): A Pulse Radiolysis Study**

Sara Goldstein* and Gidon Czapski

Department of Physical Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Received March 1, 1996^{\otimes}

The rate constant of the reaction of •N₃ with •NO has been determined to be $(4.4 \pm 0.5) \times 10^9$ M⁻¹ s⁻¹ using the pulse radiolysis technique at pH 7.6–8.3 and 21 °C. The reaction of N_3 with NO takes place through an innersphere electron-transfer mechanism yielding N_3NO as an intermediate, which subsequently decays to N_2O and \overrightarrow{N}_2 . Peroxynitrite was formed when H_2O_2 was added to the 'N₃/'NO system at pH 5.8–8.3. The maximum yield of peroxynitrite, which was obtained at $[H_2O_2] > 0.2$ M, was ∼34% of the initially produced •N₃, indicating that N₃NO does not react directly with H₂O₂. We conclude that, in the presence of high concentrations of H₂O₂, \sim 64% of the N₃NO decomposes into N₂O and N₂, whereas the remaining 34% yields NO⁺ or H₂NO₂⁺, which subsequently reacts with H_2O_2 to form peroxynitrite. The comparison of our kinetic results with those obtained previously in the H⁺/HNO₂/H₂O₂ system shows that the nitrosating species in both systems differ. As H₂NO₂⁺ is the precursor of NO^+ in the $H^+/HNO_2/H_2O_2$ system, we conclude that the reactive intermediate in our system is most probably NO^+ . From the dependence of the yield of peroxynitrite on $[H_2O_2]$, the ratio between the rate constants of the reactions of NO⁺ with H₂O₂ and H₂O was determined to be 65 M⁻¹. These rate constants were estimated to be $k_7 > 3 \times 10^8$ and $k_{-4}[\text{H}_2\text{O}] > 4.6 \times 10^6 \text{ s}^{-1}$, respectively.

Introduction

Nitric oxide has become in the last few years one of the most studied and fascinating molecules in biological chemistry. • NO is generated from L-arginine by the enzyme NO synthase¹ and is involved in a large number of diverse biological processes. $1-4$ Biologically, the important reactions of • NO are those with oxygen in its various redox forms and with transition metal ions.⁵

Excess production of \cdot NO is toxic.⁶⁻⁹ The toxicity of \cdot NO has been partially attributed to the formation of peroxynitrite $(ONOO^-)$. ⁹⁻¹¹ The latter is a potent oxidant that oxidizes a large variety of biomolecules such as sulfhydryls, 12 lipids, 13 enzymes,¹⁴ and DNA.¹⁵

The formation of peroxynitrite can take place through the reaction of 'NO, NO⁻, or NO⁺ (H₂NO₂⁺) with O₂⁻⁻, O₂, and

- (2) Palmer, R. M. J; Ferrige, A. G.; Moncada, S. *Nature* **1987**, *327*, 524.
- (3) Benjamin, N.; Dutton, J. A. E.; Ritter, J. M. *Br. J. Pharmacol.* **1991**, *102*, 847.
- (4) Curran, R. D.; Ferrari, F. K.; Kispert, P. H.; Stadler, J.; Stuehr, D. J.; Simmons, R. L.; Billiar, T. R. *FASEB J.* **1991**, *5*, 2085.
- (5) Stamler, J. S.; Singel, D. J.; Loscalzo, J. *Science* **1992**, *258*, 1898. (6) Hibbs, J. B., Jr.; Taintor, R. R.; Vavrin, Z.; Rachlin, E. M. *Biochem.*
- *Biophys. Res. Commun.* **1988**, *157*, 87. (7) Wink, D. A.; Kasprzak, K. S.; Maragos, C. M.; Elespuru, R. K.; Misra, M.; Dunams, T. M.; Cebula, T. A.; Koch, W. H.; Andrews, A. W.; Allen, J. S.; Keefer, L. K. *Science* **1991**, *254*, 1001.
- (8) Molina y Vedia, L.; McDonald, B.; Reep, B.; Brune, B.; Di Silvio, M.; Billiar, T. R.; Lapetina, E. G. *J. Biol. Chem.* **1992**, *267*, 24929.
- (9) Beckman, J. S.; Crow, J. P. *Biochem. Soc. Trans.* **1993**, *21*, 330. (10) Pryor, W. A.; Sequadrito, G. L. *Am. J. Physiol. (Lung Cell. Mol.*
- *Physiol.)* **1995**, *268*, L699. (11) Czapski, G.; Goldstein, S. *Free Rad. Biol. Med.* **1995**, *19*, 785.
- (12) Radi, R. Beckman, J. S.; Bush, K. M.; Freeman, B. *J. Biol. Chem.* **1991**, *266*, 4244.
- (13) Radi, R. Beckman, J. S.; Bush, K. M.; Freeman, B. A. *Arch. Biochem. Biophys.* **1991**, *288*, 481.
- (14) Floris, R.; Piersma, S. R.; Yang, G.; Jones, P.; Wever, R. *Eur. J. Biochem.* **1993**, *215*, 767.
- (15) King, P. A.; Anderson, V. E.; Edwards, J. O.; Gustafson, G.; Plumb, R. C.; Suggs, J. W. *J. Am. Chem. Soc.* **1992**,*114*, 5430.

 H_2O_2 , respectively. The occurrence of the reaction of $\cdot NO$ with superoxide has been demonstrated in many biological systems.^{9,11} The reaction is diffusion-controlled with $k_1 = (4.3 6.7) \times 10^9$ M⁻¹ s⁻¹.^{16,17}

$$
^{\bullet}NO + O_2^{\bullet -} \rightarrow ONOO^- \tag{1}
$$

Nitroxyl anion (NO^-) can form peroxynitrite through its reaction with molecular oxygen.18 There is no evidence that this reaction takes place in biological systems. The rate constant of reaction 2 has not yet been determined.

$$
NO^{-} + O_{2} \rightarrow ONOO^{-}
$$
 (2)

Nitrosonium ion $(NO⁺)$ is a well-known chemical entity. It is formed in strong acid solutions of nitrous acid via eqs 3 and 4.

$$
H^{+} + HNO_{2} \rightleftharpoons H_{2}NO_{2}^{+}
$$
 (3)

$$
H_2NO_2^+ \rightleftharpoons NO^+ + H_2O \tag{4}
$$

The equilibrium constant of reaction 5 has been determined

$$
H^{+} + HNO_{2} \rightleftharpoons H_{2}O + NO^{+}
$$
 (5)

spectrophotometrically by measuring $HNO₂$ and $NO⁺$ in $HClO₄$ to be $K_5 = K_3 K_4 = 3 \times 10^{-7} \text{ M}^{-1.19}$ There was no spectroscopic evidence for the formation of $H_2NO_2^+$, and its yield could not exceed 5% under these conditions.¹⁹ Nevertheless, kinetically, the nitrous acidium ion remains as a possible nitrosating agent. The very small value of K_5 indicates that

(19) Bayliss, N. S.; Dingle, R.; Watts, D. W.; Wilkie, R. J. *Aust. J. Chem.* **1963**, *16*, 933.

^{*} To whom all correspondence should be addressed.

^X Abstract published in *Ad*V*ance ACS Abstracts,* November 15, 1996. (1) Moncada, S.; Palmer, R. M. J.; Higgs, E. A. *Pharmacol. Re*V*.* **1991**, *43*, 109.

⁽¹⁶⁾ Huie, R. E.; Padmaja, S. *Free Radical Res. Comms.* **1993**, *18*, 195.

⁽¹⁷⁾ Goldstein, S.; Czapski, G. *Free Radical Biol. Med.* **1995**, *19*, 505.

⁽¹⁸⁾ Donald, C. E.; Hughes, M. N.; Thompson, J. M.; Bonner, F. T. *Inorg. Chem.* **1986**, *25*, 2676.

7736 *Inorganic Chemistry, Vol. 35, No. 26, 1996* Goldstein and Czapski

 $NO⁺$, and most probably $H_2NO_2⁺$, cannot have any biological relevance under weakly acidic and physiological conditions.

Anbar and Taube²⁰ demonstrated that peroxynitrite is formed as an intermediate during the reaction of nitrite with H_2O_2 at pH 4-6 and 25 °C. The kinetic data were consistent with both NO⁺ or "an isomeric change in $H_2NO_2^{+\cdots}$ as the nitrosating entities, though $NO⁺$ seemed at that time a more attractive possibility.20

$$
H_2NO_2^+ + H_2O_2 \rightarrow ONOOH + H^+ + H_2O \tag{6}
$$

or

$$
NO^{+} + H_{2}O_{2} \rightarrow ONOOH + H^{+}
$$
 (7)

In this study, we used the pulse radiolysis technique to generate \mathbf{N}_3 in order to oxidize \mathbf{N}_3 and to study the reaction of the oxidized species with H_2O_2 .

Experimental Section

Chemicals. All chemicals were of analytical grade and were used as received. Solutions were prepared with deionized water that was distilled and purified using a Milli-Q water purification system. Nitric oxide, C.P., was bought from Matheson Gas Products. • NO was purified by passing it through a series of scrubbing bottles containing 50% NaOH and purified water in this order. The solutions in the traps were first deaerated by purging them with helium for 1 h. Nitric oxide solutions were prepared in gas-tight syringes by purging first 1 mM phosphate buffer solutions with helium to remove O_2 , followed by bubbling for 30 min with • NO. The • NO-saturated solutions (1.8 mM at 21 °C and 690 mmHg,²¹ which is the barometric pressure in Jerusalem) were stored in syringes and subsequently diluted with N_2O saturated solutions to the desired concentrations by the syringe technique. All experiments were carried out at 21 °C.

The concentration of H_2O_2 was determined with the super-Fricke dosimeter (10 mM Fe^{II} in 0.8 N H₂SO₄) using ϵ_{302} (Fe^{III}) = 2200 M⁻¹ cm^{-1} .

Methods. Pulse radiolysis experiments were carried out with the Varian 7715 linear accelerator with 5 MeV electrons pulses of $0.1-$ 1.5 μ s and 200-mA current. The dose per pulse was 3-29 Gy, respectively, and was determined with either the thiocyanate dosimeter (10 mM KSCN in N_2O -saturated water) or the hexacyanoferrate(II) dosimeter (5 mM $K_4Fe(CN)_6$ in N₂O-saturated water) using $Ge(SCN)_2$ ⁺⁻) $= 5.0 \times 10^4$ M⁻¹ cm⁻¹ at 475 nm and Ge(Fe(CN)₆³⁻) = 6.7 × 10³ M^{-1} cm⁻¹ at 420 nm.²² A 200-W Xe-Hg lamp produced the analyzing light. Appropriate filters were used to minimize photochemistry. Irradiation was carried out in a 4-cm spectrosil cell using three light passes.

Results and Discussion

Reaction of \mathbf{Y}_3 **with •NO.** When N₂O-saturated solutions $([N₂O] = 0.025 M)$ containing azide are irradiated at pH > 3, the following reactions take place:

$$
H_2O \xrightarrow{\gamma} e^-_{aq}
$$
 (2.6), **'OH** (2.7), H^{\bullet} (0.6), H_2 (0.45),
 H_2O_2 (0.7), $H_3O^+(2.6)$ (8)

The numbers in parentheses are *G* values, which represent the number of molecules formed per 100 eV energy absorbed by pure water.

- (22) Buxton, G. V.; Stuart, C. R. *J. Chem. Soc.*, *Faraday Trans.* **1995**, *91*, 279.
- (23) Ross, A. B.; Mallard, W. G.; Helman, W. P.; Buxton, J. V.; Huie, R. E.; Neta, P. *NIST Standard References Database 40*, *Version 2.0*, 1994.

$$
e^{-}_{aq} + N_2O \rightarrow N_2 + OH^{-} + OH^{*}
$$

\n
$$
k_9 = 9.1 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \text{ }^{23} \text{ (9)}
$$

\n
$$
^{\circ}\text{OH} + N_3^- \rightarrow {}^{\circ}\text{N}_3 + OH^{-} \quad k_{10} = 1.2 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1} \text{ }^{23} \text{ (10)}
$$

\n
$$
H^{\bullet} + N_3^- \rightarrow HN_3^- \qquad k_{11} = 2.9 \times 10^9 \text{ M}^{-1} \text{ s}^{-1} \text{ }^{23} \text{ (11)}
$$

The azide radical is a strong one-electron oxidizing agent with a reduction potential of 1.3 V vs NHE.²⁴ The azide radical exhibits an optical absorption in the UV region with a sharp maximum at 274-277 nm ($\epsilon = 1400$ -2025 M⁻¹ cm⁻¹).^{25,26}

Under our experimental conditions $(N_2O$ -saturated solutions containing 20 mM azide at pH 7.6-8.3 (2 mM phosphate buffer), a slit width 0.5 mm, and a dose of 8.6 Gy), we determined ϵ_{275} (N_3) = (1690 \pm 40) M⁻¹ cm⁻¹. The decay of N_1 was seened order and $2k_1 = (8.1 \pm 0.6) \times 10^9$ M⁻¹ s⁻¹ in N₃ was second order and $2k_{12} = (8.1 \pm 0.6) \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ in agreement with previous results.25,26

$$
N_3 + N_3 \rightarrow 3 N_2 \tag{12}
$$

In the presence of * NO, reactions $13-15$ compete with reactions

$$
e_{aq}^-
$$
 + $NO \rightarrow NO^ k_{13} = 3.1 \times 10^{10} M^{-1} s^{-1} 23$ (13)

$$
*OH + *NO → HONO \t k14 = 2.0 × 1010 M-1 s-1 23
$$
\n(14)

$$
{}^{4}H + {}^{4}NO \rightarrow HNO \qquad k_{15} = 1.1 \times 10^{10} \,\mathrm{M}^{-1} \,\mathrm{s}^{-1} \,\mathrm{^{23}} \tag{15}
$$

9–11. If NO⁻ is formed, it will react rapidly with **'NO** to form $N_2O_2^-$ (and subsequently $N_3O_3^-$), which can easily be detected as $\epsilon_{380}(N_2O_2^-) \sim 3000 \text{ M}^{-1} \text{ cm}^{-1}$ and $\epsilon_{380}(N_3O_3^-) \sim 4000 \text{ M}^{-1}$ cm⁻¹.^{27,28} Under the conditions where $[N_3^-]/[^{\bullet}NO]$ and $[N_2O]$ / ['NO] are higher than 50, e^- _{aq} and 'OH were converted into N_3 , and the decay of N_3 was first order.

$$
N_3 + N_2 \rightarrow \text{products} \tag{16}
$$

The observed first-order rate constant was linearly dependent on $[\cdot NO]_0$ (Figure 1), and k_{16} was determined from the slope of the line in Figure 1 to be $(4.4 \pm 0.5) \times 10^9$ M⁻¹ s⁻¹.

Solutions containing 0.02 M N₂O, 3.6 \times 10⁻⁴ M •NO, and $0.016 - 0.024$ M azide at pH 7.6 (1.6 mM phosphate buffer) were pulse-irradiated with a total dose of 350-475 Gy. The light absorption of the solution was monitored before and after the irradiation. We found that the yield of nitrite was very low, 6-9%. This measurement is inaccurate due to the very small extinction coefficient of nitrite ($\epsilon_{354} = 21$ M⁻¹ cm⁻¹).

The reduction potential of NO / NO^+ is 1.21 V,²⁴ whereas that of N_3/N_3 ⁻ is 1.3 V.²⁴ Therefore, from the thermodynamic point of view, reaction 16 can take place through an outer-sphere electron-transfer mechanism, yielding nitrite as a final product.

- (24) Stanbury, D. M. *Ad*V*. Inorg. Chem.* **1989**, *33*, 69.
- (25) Buxton, G. V.; Janovsky, I. *J. Chem. Soc.*, *Faraday Trans.* **1976**, *72*, 1884.
- (26) Alfassi, Z. B.; Schuler, R. H. *J. Phys. Chem.* **1985**, *89*, 3359.
- (27) Von Gratzel, M.; Taniguchi, S.; Henglein, A. *Ber. Bunsenges. Phys. Chem.* **1970**, *74*, 1003.
- (28) Seddon, W. A.; Fletcher, J. W.; Sopchyshyn, F. C. *Can. J. Chem.* **1973**, *51*, 1123.

⁽²⁰⁾ Anbar, M.; Taube, H. *J. Am. Chem. Soc.* **1954**, *76*, 6243.

⁽²¹⁾ *Lange's Handbook of Chemistry*, 13th ed.; Dean, J. A., Ed.; McGraw-Hill: New York, 19xx; p 10-5.

$$
N_3 + N_0N + N_0^+ + N_3^- \tag{17}
$$

$$
NO^{+} + H_{2}O \rightleftharpoons H_{2}NO_{2}^{+}
$$
 (–4)

$$
H_2NO_2^+ \rightleftharpoons H^+ + HNO_2 \tag{–3}
$$

As the yield of nitrite did not exceed 9%, the outer-sphere electron-transfer mechanism is rejected, and an inner-sphere electron-transfer mechanism should be considered.

$$
\mathbf{\dot{N}}_3 + \mathbf{\dot{N}O} \rightarrow \mathbf{N}_3 \mathbf{NO} \tag{18}
$$

The formation of N_3NO as an intermediate has already been shown in the reaction between HN_3 and HNO_2 by ¹⁵N tracer experiments.29 This species can also be isolated at low temperatures.30

The very low yield of nitrite under our experimental conditions can be attributed to reactions $13-15$. Under our experimental conditions, 5.8% of the hydrated electrons are converted into NO^- (reaction 13), 2.4-3.6% of the hydroxyl radicals are converted into nitrite (reaction 14), and $6.7-9.7\%$ of the hydrogen atoms are converted into NO^- (reaction 15). $NO^$ reacts rapidly with 'NO to yield N_2O_2 ⁻ (and subsequently N_3O_3 ⁻). The final products of this process are N₂O and $NO₂^{-27,28}$ Thus, the total yield of nitrite due to reactions 13– 15 is 4.8-5.5%, which is within experimental error identical to the measured yields of $6-9\%$. This indicates that the decomposition of N3NO takes place mainly via reaction 19 and that there is no appreciable hydrolysis N_3NO in aqueous solutions in agreement with previous results.³¹

$$
N_3NO \rightarrow N_2O + N_2 \tag{19}
$$

 \cdot **N₃/** \cdot **NO/H₂O₂ System.** When H₂O₂ (p $K_a = 11.8$) is added to N2O-saturated solutions containing azide and • NO, reactions $20-22$ may compete with reactions 9, 10, and 16. (The rate

$$
e_{aq}^{\dagger} + H_2O_2 \rightarrow {}^{*}OH + OH^{-}
$$

 $k_{20} = 1.2 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1 \text{ 23}} \text{ (20)}$

$$
{}^{*}\text{OH} + \text{H}_{2}\text{O}_{2} \rightarrow \text{H}^{+} + \text{O}_{2}^{2} + \text{H}_{2}\text{O}
$$

$$
k_{21} = 3.5 \times 10^{7} \,\text{M}^{-1} \,\text{s}^{-1} \,\text{^{23}} \,\text{(21)}
$$

$$
N_3 + HO_2^- \rightarrow N_3^- + H^+ + O_2^{--}
$$

$$
k_{22} = 3.2 \times 10^9 \text{ M}^{-1} \text{ s}^{-1 \text{ 23}} \text{ (22)}
$$

constant of \mathbf{N}_3 with H₂O₂ is lower than 5×10^6 M⁻¹ s⁻¹).²³ When $[N_3^-]/[NO]$ and $[N_2O]/[NO]$ are higher than 50, [NO]

 $= 60-360 \mu M$, [H₂O₂] < 0.2 M, and pH <8.5, most of the hydroxyl radicals and the hydrated electrons are converted into N_3 , which subsequently reacts with 'NO and not with H_2O_2 . Under these conditions, the following features were observed:

(i) A fast formation of an absorption with maximum at 300 \pm 3 nm (Figure 2). The formation rate of the absorbance was independent of $[N_3^-]$ and $[H_2O_2]$ but dependent on $[°NO]_0$, indicating that the rate-determining step is the reaction of $\sqrt[3]{3}$ with **NO**

(ii) The absorption yield increased with $[H_2O_2]$, reaching a plateau value at $[H_2O_2] > 0.2$ M (Figure 3).

Figure 1. Observed first-order rate constant of the decay of \mathbf{N}_3 as a function of $[NO]_0$ in 0.02 M N₂O and 0.02 M azide at pH 8.3 (1.6) mM phosphate buffer). The dose was 3.2-5.0 Gy.

Wavelength, nm

Figure 2. Absorption spectrum obtained 100 *µ*s after the end of the pulse. The solution contained 0.02 M N₂O, 0.019 M azide, 144 μ M NO, and $0.1 \text{ M H}_2\text{O}_2$ at pH 8.1 (1.6 mM phosphate buffer). The optical path length was 12.3 cm, and the dose was 14.6 Gy.

(iii) The absorption yield was independent of $[N_3^-]$ ($[N_3^-]$ $=$ 5 \times 10⁻³-0.2 M) as observed in the presence of 0.05 M $H₂O₂$ at pH 8.1 (1.6 mM phosphate buffer).

(iv) The absorption yield was pH-dependent, resulting in an apparent $pK_a = 7$ (Figure 4).

(v) The decay of the absorbance followed first-order kinetics. The observed first-order rate constant decreased with the increase in pH: 0.95, 0.63, 0.32, and 0.11 s⁻¹ at pH 5.8, 6.4, 7, and 7.3, respectively, at 21 °C. At pH >7.5, the decay was subject to photolysis and could not be measured. $17,32$

These results demonstrate that the species formed in the \mathbf{v}_3
 \mathbf{v}_{O} \mathbf{u}_{O} and \mathbf{v}_{S} is noncryptibile. This conclusion was based NO/H2O2 system is peroxynitrite. This conclusion was based on the known properties of peroxynitrite: (a) peroxynitrous acid has a $pK_a = 6.8^{10}$; (b) the maximum absorption of ONOO⁻ is at 302 nm ($\epsilon = 1670 \pm 50$ M⁻¹ cm⁻¹),³³ whereas ϵ_{302} (ONOOH) \sim 200 M⁻¹ cm⁻¹;^{17,32} (c) ONOO⁻ is stable whereas ONOOH decays fast to nitrate with k_d ∼ 1.3 s⁻¹ at 25 °C.¹⁰

The maximum yield of peroxynitrite was calculated from Figure 3 to be ~30% of the initially produced •N₃ using ϵ_{303} =

⁽³⁰⁾ Lucien, H. W. *J. Am. Chem. Soc.* **1958**, *80*, 4458.

⁽³¹⁾ Bunton, C. A.; Stedman, G. *J. Chem. Soc.* **1959**, 3466.

⁽³²⁾ Logager, T.; Sehested, K. *J. Phys. Chem.* **1993**, *97*, 10047.

⁽³³⁾ Hughes, M. N.; Nicklin, H. G. *J. Chem. Soc. A* **1968**, 450.

1670 M^{-1} cm⁻¹ and p $K_a = 6.8$. This result supports our previous conclusion that reaction 16 proceeds through an innersphere electron-transfer mechanism. If $NO⁺$ would have been formed via reaction 17, one would expect a 100% yield of peroxynitrite at infinite H_2O_2 , where reaction 7 competes efficiently with the hydrolysis of NO^+ . In addition, N_3NO cannot be the oxidizing species, as in this case a 100% yield of peroxynitrite would also be expected at infinite H_2O_2 .

Our experimental observations are in accord with the formation of peroxynitrite through the reaction of H_2O_2 with $H_2NO_2^+$ (mechanism I) or through the reaction of H_2O_2 with NO^+ (mechanisms II).

Imetraansin	k_{19}
k_{18}	k_{19}
$N_3 + NO \longrightarrow N_3NO$	
$k_{23}[H_2O] \parallel k_{23}$	
$N_3 + H_2NO_2^+ \longrightarrow ONOOH + H_2O + H$	
$k_3 \parallel k_3$	
$H^+ + HNO_2$	

mechanism II

mechanism I

$$
N_{2}O + N_{2}
$$
\n
$$
k_{18}
$$
\n
$$
N_{3} + NO \longrightarrow N_{3}NO
$$
\n
$$
k_{24} \parallel k_{24}
$$
\n
$$
N_{3} + NO' \longrightarrow H_{2}O_{2}
$$
\n
$$
N_{3} + NO' \longrightarrow k_{7}
$$
\n
$$
k_{4} \parallel k_{4}H_{2}O
$$
\n
$$
H_{2}NO_{2}^{+}
$$
\n
$$
k_{3} \parallel k_{3}
$$
\n
$$
H' + HNO_{2}
$$

The yield of peroxynitrite was independent of $[N_3^-] = 5 \times$ 10^{-3} –0.2 M in the presence of 50 mM H_2O_2 . Therefore, in mechanism I, reaction -23 can be neglected, and the competition for H_2NO_2 ⁺ is between reactions -3 and 6, where OD303(max) is the maximum yield of peroxynitrite at infinite $H₂O₂$:

$$
OD_{303} = OD_{303}(\text{max})k_6[H_2O_2]/(k_6[H_2O_2] + k_{-3}) \quad (25)
$$

If mechanism II applies, reaction -24 can be neglected, and the competition for NO^+ is between reactions -4 and 7.

$$
OD_{303} = OD_{303}(\text{max})k_7[\text{H}_2\text{O}_2]/(k_7[\text{H}_2\text{O}_2] + k_{-4}[\text{H}_2\text{O}]) \tag{26}
$$

A plot of $1/OD_{303}$ as a function of $1/[H_2O_2]$ yields a straight line (Figure 5), where $1/intercept = OD_{303}(max) = 0.064$ and intercept/slope = $I/S = 65$ M⁻¹, which equals k_6/k_{-3} (mechanism I) or k_7/k_{-4} [H₂O] (mechanism II). As OD₃₀₃(max) = 0.064 at infinite H_2O_2 and at pH 8 ([[•]N₃]₀ = 9.75 μ M, l = 12.3 cm), the maximum yield of peroxynitrite is calculated to be 34% of the initially produced \mathbf{v}_3 , using $pK_a = 6.8$ and $\epsilon_{303} = 1670$ M^{-1} cm⁻¹. This value is somewhat higher than that of the 30%

Figure 3. Absorbance at 303 nm measured 100 *µ*s after the end of the pulse as a function of $[H_2O_2]$. Solutions contained 0.023 M N₂O, 0.019 M azide, and $72-360 \mu \text{M}$ •NO at pH 8.0 (1.8 mM phosphate buffer). The optical path length was 12.3 cm, and the dose was 14.6 Gy.

calculated from the plateau region of Figure 3 and shows that k_{19}/k_{23} or $k_{19}/k_{24} = 2$.

The rate-determining step of the nitrosation process when ['NO] = 60 -140 μ M and [H₂O₂] ≥ 8 mM is reaction 18 $(k_{19}[N_3NO]$ and $k_6[H_2NO_2^+][H_2O_2]$ or $k_7[NO^+][H_2O_2]$ exceed k_{18} ['NO]['N₃]), and hence, k_{19} > 1 × 10⁶ s⁻¹ and k_6 or k_7 > 3 \times 10⁸ M⁻¹ s⁻¹.

Anbar and Taube²⁰ measured the rate of the disappearance of nitrite as a function of H_2O_2 at pH 4-6 (0.3 M phosphate buffer) and 25° C. Benton and Moore³⁴ measured the formation rate of ONOOH as a function of H_2O_2 in the presence of nitrous acid at pH \leq 2 and 0 °C. In both studies the rate law was found to obey eq 27, where *a*, *b*, and *c* are constants.

rate =
$$
\frac{a[H^+][HNO_2][H_2O_2]}{b + c[H_2O_2]} = k_{obs}[HNO_2]
$$
 (27)

A plot of $[H^+] / k_{obs}$ as a function of $1/[H_2O_2]$ yielded a straight line with intercept/slope = $I/S = c/b = 2.32^{34}$ to 2.4 M^{-1 20} and $1/I = a/c = 617^{34}$ to 2.9×10^3 M⁻¹ s⁻¹.²⁰ The rate law is consistent with either NO^+ or $H_2NO_2^+$ as the reactive intermediates. If $NO⁺$ is the nitrosating species (reactions 3, 4, and 7), rate equation 27 is obtained where $a = k_7k_4K_3$, $b =$ k_{-4} [H₂O] and $c = k_7$. If H₂NO₂⁺ is the reactive intermediate (reactions 3 and 6), rate eq 27 is obtained where $a = k_6k_3$, $b =$ k_{-3} and $c = k_6$. The kinetic results in the H⁺/HNO₂/H₂O₂ cannot distinguish between NO⁺ and $H_2NO_2^+$ (or "an isomeric change in $H_2NO_2^{+}}^{20}$ as noted by Anbar and Taube.²⁰ Benton and Moore³⁴ concluded wrongly that $NO⁺$ is the reactive intermediate, although they noted that at low concentrations of H_2O_2 it is impossible to distinguish between NO⁺ and $H_2NO_2^+$.

The kinetic results obtained in the $H^+/HNO_2/H_2O_2$ and $^1N_3/$
 1NOH_2O_2 systems can fit the mechanisms where either H NO $^+$ NO/H₂O₂ systems can fit the mechanisms where either $H_2NO_2^+$ (or an isomeric change in $H_2NO_2^{+20}$) or NO⁺ is the nitrosating species. In our study, the competition ratio equals 65 M^{-1} , whereas in the H^+ /HNO₂/H₂O₂ system it equals 2.32³⁴ to 2.4 M^{-1} .²⁰ This shows that the reactive intermediates in these two systems differ.

Due to this difference, we argue that $H_2NO_2^+$ (or its isomeric form) cannot be the reactive species in our system. If this would

(34) Benton, D. J.; Moore, P. *J. Chem. Soc. A* **1970**, 3179.

Figure 4. Absorbance at 303 nm as measured 100 *µs* after the end of the pulse as a function of pH. Solutions contained 0.023 M N₂O, 0.019 M azide, 144 μ M •NO, and 0.1 M H₂O₂. The optical path length was 12.3 cm, and the dose was 14.6 Gy. The solid line is the fit of the data to ϵ_{303} (ONOO⁻) = 1670 M⁻¹ cm⁻¹, ϵ_{303} (ONOOH) = 178 M⁻¹ cm⁻¹, and pK_a = 7.0.

Figure 5. Double-reciprocal plot of the change in the absorbance at 303 nm with varying the concentrations of H_2O_2 in the presence of 0.023 M N₂O, 0.019 M azide, and 72-360 μ M •NO at pH 8.0 (1.8) mM phosphate buffer). The optical path length was 12.3 cm, and the dose was 14.6 Gy.

be the case, the same competition ratio would be expected in both systems as $H_2NO_2^+$ is the precursor of NO⁺ in the H⁺/ $HNO₂/H₂O₂$ system, and we have determined above that $k₆$ exceeds 3×10^8 M⁻¹ s⁻¹. NO⁺ will be formed in the H⁺/ $HNO₂/H₂O₂$ system provided that $k_4 > k_6[H₂O₂]$. In such a case, $H_2NO_2^+$ cannot be the nitrosating entity in our system, but $NO⁺$, and the same competition ratio is expected in both systems. This conclusion is not affected if one assumes that the nitrosating intermediate in the H^+ /HNO₂/H₂O₂ system is the isomeric form of H_2NO_2 ⁺ as suggested by Anbar and Taube²⁰ (see footnote 35).

We conclude that the nitrosating species in our system is most probably NO⁺, and therefore k_7/k_{-4} [H₂O] = 65 M⁻¹, $k_7 > 3 \times$ 10^8 M⁻¹ s⁻¹, and k_{-4} [H₂O] > 4.6 × 10⁶ s⁻¹. The value of k_7

cannot exceed the diffusion-controlled limit, and therefore $3 \times$ $10^8 \le k_7 \le 1 \times 10^{10} \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$, and $4.6 \times 10^6 \le k_{-4} \mathrm{[H_2O]} \le 1.5$ \times 10⁸ s⁻¹. As 0.2 M azide had no effect on the yield of peroxynitrite in the presence of 50 mM H_2O_2 , we calculate that $8 \times 10^7 \leq k_{-24} \leq 3 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}.$

The nitrosating entity in the $H^+/HNO_2/H_2O_2$ system is most probably $H_2NO_2^+$ and therefore, $I/S = k_6/k_{-3} = 2.32-2.4 M^{-1}$ and $1/\mathbf{I} = k_3 = 617 - 2900 \, \text{M}^{-1} \, \text{s}^{-1} \, \text{m}^{-20,34,36}$ These results demonstrate that $H_2NO_2^+$ is a strong acid, as rates of protonation of strong acids are considerably lower than the diffusioncontrolled limit.

Bunton and Stedman³¹ studied the reaction of HN_3 with HNO_2 in $[18O]$ water, and showed that the reaction takes place via the oxidation of azide ion by $H_2NO_2^+$.
 $H^+ + HNO_2 \rightleftharpoons H_2NO_2^+ \xrightarrow{N_2} N_2$

$$
H^{+} + HNO_{2} \rightleftharpoons H_{2}NO_{2}^{+} \stackrel{N_{3}^{-}}{\xrightarrow{\hspace{0.5cm}}} N_{3}NO + H_{2}O \rightarrow N_{2}O + N_{2}
$$
\n(28)

Their conclusion does not contradict ours, as in their system $H_2NO_2^+$ is scavenged by N_3^- before NO⁺ is formed. In our system, N_3NO is initially produced and dissociates into NO^+ and N_3 ⁻. Therefore, if high concentrations of a potential substrate are present, e.g., H_2O_2 , it will scavenge NO^+ and $H_2NO_2^+$ will not be formed.

We conclude that both NO^{+} and $H_{2}NO_{2}^{+}$ can oxidize rapidly H_2O_2 and N_3 ⁻ as well as other substrates.^{31,37} The nature of the reactive intermediate will depend on the particular system. *k* both NO⁺ and H
well as other subsediate will depend
 $H_2NO_2^+$
 $\overline{R_4}$
 R_6 ⁺ +S $\overline{R_4}$ $\overline{R_4}$

$$
H^{+} + HNO_{2} \frac{k_{3}}{k_{-3}} H_{2}NO_{2}^{+} \xrightarrow[k-4]{k_{4}} NO^{+} + H_{2}O \xrightarrow{K} NO
$$

divers

If the nitrosation starts from the left through the reaction of H^+ with HNO_2 , H_2NO_2 ⁺ will most probably be the reactive intermediate, provided that $k_6[S]$ exceeds k_4 . In cases where $NO⁺$ is initially formed, e.g., from N₃NO or other NO⁺-releasing

⁽³⁵⁾ Anbar and Taube20 noted that the rate law for the exchange of oxygen between nitrite and water can fit both $NO⁺$ or an isomeric change in $H_2NO_2^+$. Therefore, the nitrosating intermediate in their system in the presence of H₂O₂ can be H₂NO₂^{\pm}, its isomeric form, or NO⁺. The rate law for the decay of H_2O_2 given in ref 20 has the form of our eq 27 and can fit these three possibilities. We conclude that in our system NO^{+} is the nitrosating intermediate whereas in the $H^{+}/HNO_{2}/H_{2}O_{2}$ system it is $H_2NO_2^+$ or its isomeric form. $H_2NO_2^+$ cannot be the reactive intermediate in our system and the isomeric form in the H^{+} / $HNO₂/H₂O₂$ system because $H₂NO₂⁺$ is the precursor of its isomeric form.

⁽³⁶⁾ Halfpenny and Robinson (*J. Chem. Soc. A* **1952**, 928.) studied the reaction of HNO₂ with H₂O₂ at 19 °C and obtained that $-d[H_2O_2]/dt$ $= k_{\text{obs}}[H^+] [HNO_2][H_2O_2]$ and $k_{\text{obs}} = 140 \text{ M}^{-2} \text{ s}^{-1}$. According to the mechanism given by reactions 3 and 6, rate eq 27 reduces to the observed rate when $k_{-3} > k_6[H_2O_2]$, and hence, $k_{obs} = k_6K_3 = 140$ M^{-2} s⁻¹. As $k_6/k_{-3} = 2.4 \text{ M}^{-1}$, $2^{0.34}$, $k_3 = 60 \text{ M}^{-1}$ s⁻¹, which is more than 1 order of magnitude lower than the values determined in refs 20 and 34. The source for this discrepancy may be the following: Halfpenny and Robinson studied the reaction of $HNO₂$ with $H₂O₂$ in the presence of relatively high concentrations of H_2O_2 (≤ 0.176 M), where k_{-3} does not exceed k_6 [H₂O₂]. Therefore, k_6 [H₂O₂] cannot be neglected, and 140 M⁻² s⁻¹ equals $k_6K_3/(k_{-3} + k_6[H_2O_2])$, which is lower than k_6K_3 .

⁽³⁷⁾ Ridd, J. H. *Ad*V*. Phys. Org. Chem.* **1978**, *16*, 1.

compounds,5,37,38 it will most probably react with the substrate, and $\overline{H}_2NO_2^+$ will not be formed, unless $k_{-4}[H_2O]$ exceeds $k_7[S]$.

Conclusions

The azide radical reacts with °NO to yield N₃NO, which decomposes mainly into N_2O and N_2 . In the presence of H_2O_2 , peroxynitrite is formed. The maximum yield of peroxynitrite at $[H_2O_2] > 0.2$ M is 34%, indicating that N₃NO does not react directly with H_2O_2 . The kinetic results suggest that N₃NO may either hydrolyze to $H_2NO_2^+$ or dissociate into NO^+ in the presence of H_2O_2 . Both intermediates are capable of nitrosating H_2O_2 .

The comparison of our competition ratio with that obtained in the H⁺/HNO₂/H₂O₂ system,^{20,34} indicates that the nitrosating intermediates in these systems differ. As $H_2NO_2^+$ is the precursor of NO^+ in the case of $H^+/HNO_2/H_2O_2$, we conclude that the reactive species in our system is most probably $NO^+,$ whereas in the $H^{\dagger}/HMO_2/H_2O_2$ system it is $H_2NO_2^{\dagger}$.

Nitrosation of a substrate by NO^{+} or $H_{2}NO_{2}^{+}$ will take place only if the rate of these reactions competes efficiently with the hydrolysis of NO⁺ or with the dissociation of $H_2NO_2^+$. Even if the rate constant of the nitrosation is diffusion-controlled, the concentrations of the substrate in the case of $NO⁺$ should exceed 0.5 mM as the half-life of NO⁺ is shorter than 0.15 μ s. Such high concentrations are not always present in biological systems*.* Therefore, we suggest that nitrosation *in vivo* may take place via NOX, where X^- represents an ion that reacts fast with $H_2NO_2^+$ or NO^{+37,38} and that is present at relatively high concentrations, e.g., chloride. This mechanism will apply only in cases where the rates of the decomposition and/or hydrolysis of NOX are considerably slower than those of the dissociation of $H_2NO_2^+$ and the hydrolysis of NO⁺.

Acknowledgment. This research was supported by Grant 4129 from The Council For Tobacco Research and by The Israel Science Foundation.

⁽³⁸⁾ Stedman, G. *Ad*V*. Inorg. Chem. Radiochem.* **1979**, *22*, 113. IC960233K